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CHAPTER 1

Introduction

This is a brief documentation for using pyProximation. pyProximation was originally written to solve systems of
integro-differential equations via collocation method in arbitrary number of variables. The current implementation of
the method is based on a finite dimensional orthogonal system of functions.

1.1 Requirements and dependencies

Since this is a python package, so clearly one needs have python available. pyProximation relies on the following
packages:

• for numerical calculation:

– numpy,

– scipy ,

• for symbolic computation, either:

– sympy or,

– sage or,

– symengine,

• for visualization:

– mathplotlib,

– mayavi.

For the symbolic computation, pyProximation need the presence of either sympy or sage.

1.2 Download

pyProximation can be obtained from https://github.com/mghasemi/pyProximation.
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1.3 Installation

To install pyProximation, run the following in terminal:

sudo python setup.py install

1.3.1 Documentation

The documentation of pyProximation is prepaqred via sphinx.

1.4 License

pyProximation is distributed under MIT license:

1.4.1 MIT License

Copyright (c) 2016 Mehdi Ghasemi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

4 Chapter 1. Introduction
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CHAPTER 2

Symbolic toolkits

The ‘pyProximation’ library performs symbolic computations as well as numerical calculations. To perform numer-
ical calculations, it relies on the excelent libraries ‘NumPy’ and ‘SciPy’. There are various toolkits that are able to
handel symbolic computations and each one is suitable for certain purposes. ‘pyProximation’ takes advantage of three
different toolkits:

1. sympy

2. sage

3. symengine

2.1 SymPy

SymPy is a Python library for symbolic computation. It provides computer algebra capabilities either as a standalone
application, as a library to other applications, or live on the web as SymPy Live or SymPy Gamma. SymPy is trivial to
install and to inspect because is written entirely in Python with few dependencies. This ease of access combined with
a simple and extensible code base in a well known language make SymPy a computer algebra system with a relatively
low barrier to entry.

SymPy includes features ranging from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quan-
tum physics. It is capable of formatting the result of the computations as LaTeX code.

SymPy is free software and is licensed under New BSD License. The lead developers are Ondřej Čertík and Aaron
Meurer.

2.1.1 Usage

Sympy can be imported by:

from sympy import *

To introduce a symbolic variable called x, use:

5
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x = Symbol('x')

and to define a symbolic function y depending in symbolic variables x, t, use:

y = Function('y')(x, t)

To introduce an equation like 𝑦(𝑥, 𝑡) = 𝑥𝑡, use Eq:

equation = Eq(y, x*t)

For differentiation of y with respect to x of order n, i.e. 𝜕𝑛𝑦
𝜕𝑥𝑛 , enter:

diff(y, x, n)

For integration of y with respect to x, i.e.,
∫︀
𝑦𝑑𝑥, write:

integrate(y, x)

and for definite integral
∫︀ 𝑏

𝑎
𝑦𝑑𝑥 write:

integrate(y, (x, a, b))

2.2 Sage

SageMath (previously Sage or SAGE, System for Algebra and Geometry Experimentation) is a free open-source
mathematics software system licensed under the GPL with features covering many aspects of mathematics, including
algebra, combinatorics, numerical mathematics, number theory, and calculus. It builds on top of many existing open-
source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more. Access their combined
power through a common, Python-based language or directly via interfaces or wrappers.

2.2.1 Usage

When present, Sage can be imported by:

from sage.all import *

To introduce a symbolic variable called x, use:

x = var('x')

and to define a symbolic function y depending in symbolic variables x, t, use:

y = function('y')(x, t)

To introduce an equation like 𝑦(𝑥, 𝑡) = 𝑥𝑡, use ==:

equation = (y == x*t)

For differentiation of y with respect to x of order n, i.e. 𝜕𝑛𝑦
𝜕𝑥𝑛 , enter:

diff(y, x, n)

For integration of y with respect to x, i.e.,
∫︀
𝑦𝑑𝑥, write:

6 Chapter 2. Symbolic toolkits
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integral(y, x)

and for definite integral
∫︀ 𝑏

𝑎
𝑦𝑑𝑥 write:

integral(y, (x, a, b))

2.3 SymEngine

SymEngine is a standalone fast C++ symbolic manipulation library. Optional thin wrappers allow usage of the library
from other languages, e.g.:

• C wrappers allow usage from C, or as a basis for other wrappers;

• Python wrappers allow easy usage from Python and integration with SymPy and Sage;

• Ruby wrappers;

• Julia wrappers;

• Haskell wrappers.

It is licensed under MIT license.

2.3.1 Usage

SymEngine can be imported by:

from symengine import *

To introduce a symbolic variable called x, use:

x = Symbol('x')

and to define a symbolic function y depending in symbolic variables x, t, use:

y = function_symbol('y', x, t)

SymEngine does not have specific command for defining an equation, so work with equations, one should always
equalities with 0. To introduce an equation like 𝑦(𝑥, 𝑡) = 𝑥𝑡, use:

equation = y - x*t

For differentiation of y with respect to x, i.e. 𝜕𝑦
𝜕𝑥 , enter:

diff(y, x)

To achieve a certain order, repeat the above code as many times as necessary.

The current version of SymEngine does not support integration.

2.3. SymEngine 7
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CHAPTER 3

Measures

3.1 Density function

The pyProximation implements two different scenarios for measure spaces:

1. Continuous case, where support of the measure is given as a compact subspace (box) of R𝑛, and

2. Discrete case, where a finite set of points and their weights are given.

3.1.1 Continuous measure spaces

For the continuous case, generally assume that the support of the measure is a product of closed interval, i.e.,∏︀𝑛
𝑖=1[𝑎𝑖, 𝑏𝑖], where for each i, 𝑎𝑖 < 𝑏𝑖. Such a set can be defined as a list of ordered pairs of real numbers as

[(a1, b1), (a2, b2), ..., (an, bn)]. Moreover, when we speak about a subset of the support, we
always refer to a box, defined as a list of 2-tuples.

In this case, the measure is given implicitly as a density function 𝑤(𝑥). So the measure of a set S is given by

𝜇(𝑆) =

∫︁
𝑆

𝑤(𝑥)𝑑𝑥.

For example, the following code defines the Lebesgue measure on [−1, 1] × [−1, 1] and finds the measure of the set
[0, 1]× [−1, 0]:

# import the Measure class
from pyProximation import Measure
# define the support of the measure
D = [(-1, 1), (-1, 1)]
# define the measure with the constant density 1
M = Measure(D, 1)
# define a set called S
S = [(0, 1), (-1, 0)]
# find the measure of the set S
print M.measure(S)

9
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3.1.2 Discrete measure spaces

In this case, the measure is basically a convex combination of Dirac measure. Given a set 𝑋 = {𝑥1, . . . , 𝑥𝑛} and
corresponding non-negative weights 𝑤1, . . . , 𝑤𝑛, one defines a measure as 𝜇 =

∑︀𝑛
𝑖=1 𝑤𝑖𝛿𝑥𝑖

. Then the measure of a
subset 𝑆 = {𝑥𝑖1 , . . . , 𝑥𝑖𝑘} of X is given by

𝜇(𝑆) =

∫︁
𝑆

𝑑𝜇 =

𝑘∑︁
𝑗=1

𝑤𝑖𝑗

The following is a sample code for discrete case:

# import the Measure class
from pyProximation import Measure
# define the support and density
D = {'x1':1, 'x2':.5, 'x3':1.1, 'x4':.6}
# define the measure
M = Measure(D)
# define a set called S
S = ['x2', 'x3']
# find the measure of the set S
print M.measure(S)

3.2 Integrals

Suppose that a measure space (𝑋,𝜇) and a measurable function f on X are given. The method integral computes∫︀
𝑋
𝑓𝑑𝜇. If 𝜇 is discrete, then f can be a dictionary with keys as points of domain and values as evaluation at each

point. Otherwise, f is simply a numerical function:

from pyProximation import Measure
from numpy import sqrt
# define the density function
w = lambda x:1./sqrt(1.-x**2)
# define the support
D = [(-1, 1)]
# initiate the measure space
M = Measure(D, w)
# set f(x) = x^2
f = lambda x: x**2
# integrate f(x) w.r.t. w(x)
print M.integral(f)

Or in two dimensions:

from pyProximation import Measure
from numpy import sqrt
# define the density function
w = lambda x, y:y**2/sqrt(1.-x**2)
# define the support
D = [(-1, 1), (-1, 1)]
# initiate the measure space
M = Measure(D, w)
# set f(x, y) = x^2 + y
f = lambda x, y: x**2 + y
# integrate f(x, y) w.r.t. w(x, y)
print M.integral(f)

10 Chapter 3. Measures
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3.3 p-norms

Given a measure space (𝑋,𝜇) and a measurable function f, the p-norm of f, for a positive p is defined as:

‖𝑓‖𝑝 =

(︂∫︁
𝑋

|𝑓 |𝑝𝑑𝜇
)︂1/𝑝

.

The method norm(p, f) calculates the above quantity.

3.4 Drawing samples

Suppose that (𝑋,𝜇) is a measure space and one wishes to draw a sample of size n from X according to the distribution
𝜇. This can be done by the method sample(n) which returns a list of n random points from the support, according
to 𝜇.

3.3. p-norms 11
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CHAPTER 4

Hilbert Spaces

4.1 Orthonormal system of functions

Let X be a topological space and 𝜇 be a finite Borel measure on X. The bilinear function ⟨·, ·⟩ defined on 𝐿2(𝑋,𝜇) as
⟨𝑓, 𝑔⟩ =

∫︀
𝑋
𝑓𝑔𝑑𝜇 is an inner product which turns 𝐿2(𝑋,𝜇) into a Hilbert space.

Let us denote the family of all continuous real valued functions on a non-empty compact space X by C(𝑋). Suppose
that among elements of C(𝑋), a subfamily A of functions are of particular interest. Suppose that A is a subalgebra of
C(𝑋) containing constants. We say that an element 𝑓 ∈ C(𝑋) can be approximated by elements of A, if for every
𝜖 > 0, there exists 𝑝 ∈ 𝐴 such that |𝑓(𝑥) − 𝑝(𝑥)| < 𝜖 for every 𝑥 ∈ 𝑋 . The following classical results guarantees
when every 𝑓 ∈ C(𝑋) can be approximated by elements of A.

Note: Stone-Weierstrass:

Every element of C(𝑋) can be approximated by elements of A if and only if for every 𝑥 ̸= 𝑦 ∈ 𝑋 , there exists 𝑝 ∈ 𝐴
such that 𝑝(𝑥) ̸= 𝑝(𝑦).

Despite the strong and important implications of the Stone-Weierstrass theorem, it leaves every computational details
out and does not give an specific algorithm to produce an estimator for f with elements of A, given an error tolerance
𝜖, and the search for a such begins.

Define ‖𝑓‖∞ (the sup norm of f ) of a given function 𝑓 ∈ C(𝑋) by

‖𝑓‖∞ = sup
𝑥∈𝑋

|𝑓(𝑥)|,

Then the above argument can be read as: For every 𝑓 ∈ C(𝑋) and every 𝜖 > 0, there exists 𝑝 ∈ 𝐴 such that
‖𝑓 − 𝑝‖∞ < 𝜖.

Let (𝑉, ⟨·, ·⟩) be an inner product space with ‖𝑣‖2 = ⟨𝑣, 𝑣⟩ 1
2 . A basis {𝑣𝛼}𝛼∈𝐼 is called an orthonormal basis for

V if ⟨𝑣𝛼, 𝑣𝛽⟩ = 𝛿𝛼𝛽 , where 𝛿𝛼𝛽 = 1 if and only if 𝛼 = 𝛽 and is equal to 0 otherwise. Every given set of linearly
independent vectors can be turned into a set of orthonormal vectors that spans the same sub vector space as the original.
The following well-known result gives an algorithm for producing such orthonormal from a set of linearly independent
vectors:

13
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Note: Gram–Schmidt

Let (𝑉, ⟨·, ·⟩) be an inner product space. Suppose {𝑣𝑖}𝑛𝑖=1 is a set of linearly independent vectors in V. Let

𝑢1 :=
𝑣1

‖𝑣1‖2

and (inductively) let

𝑤𝑘 := 𝑣𝑘 −
𝑘−1∑︁
𝑖=1

⟨𝑣𝑘, 𝑢𝑖⟩𝑢𝑖 and 𝑢𝑘 :=
𝑤𝑘

‖𝑤𝑘‖2
.

Then {𝑢𝑖}𝑛𝑖=1 is an orthonormal collection, and for each k,

𝑠𝑝𝑎𝑛{𝑢1, 𝑢2, · · · , 𝑢𝑘} = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, · · · , 𝑣𝑘}.

Note that in the above note, we can even assume that 𝑛 = ∞.

Let 𝐵 = {𝑣1, 𝑣2, . . . } be an ordered basis for (𝑉, ⟨·, ·⟩). For any given vector 𝑤 ∈ 𝑉 and any initial segment of B, say
𝐵𝑛 = {𝑣1, . . . , 𝑣𝑛}, there exists a unique 𝑣 ∈ span(𝐵𝑛) such that ‖𝑤 − 𝑣‖2 is the minimum:

Note: Let 𝑤 ∈ 𝑉 and B a finite orthonormal set of vectors (not necessarily a basis). Then for 𝑣 =
∑︀

𝑢∈𝐵⟨𝑢,𝑤⟩𝑢

‖𝑤 − 𝑣‖2 = min
𝑧∈span(𝐵)

‖𝑤 − 𝑧‖2.

Now, let 𝜇 be a finite measure on X and for 𝑓, 𝑔 ∈ C(𝑋) define ⟨𝑓, 𝑔⟩ =
∫︀
𝑋
𝑓𝑔𝑑𝜇. This defines an inner product on

the space of functions. The norm induced by the inner product is denoted by ‖ · ‖2. It is evident that

‖𝑓‖2 ≤ ‖𝑓‖∞𝜇(𝑋), ∀𝑓 ∈ C(𝑋),

which implies that any good approximation in ‖ · ‖∞ gives a good ‖ · ‖2-approximation. But generally, our interest
is the other way around. Employing Gram-Schmidt procedure, we can find ‖ · ‖2 within any desired accuracy, but
this does not guarantee a good ‖ · ‖∞-approximation. The situation is favorable in finite dimensional case. Take
𝐵 = {𝑝1, . . . , 𝑝𝑛} ⊂ C(𝑋) and 𝑓 ∈ C(𝑋), then there exists 𝐾𝑓 > 0 such that for every 𝑔 ∈ span(𝐵 ∪ {𝑓}),

𝐾𝑓‖𝑔‖∞ ≤ ‖𝑔‖2≤‖𝑔‖∞𝜇(𝑋).

Since X is assumed to be compact, C(𝑋) is separable, i.e., C(𝑋) admits a countable dimensional dense subvector
space (e.g. polynomials for when X is a closed, bounded interval). Thus for every 𝑓 ∈ C(𝑋) and every 𝜖 > 0 one can
find a big enough finite B, such that the above inequality holds. In other words, good enough ‖ · ‖2-approximations of
f give good ‖ · ‖∞-approximations, as desired.

4.2 OrthSystem

Given a measure space, the OrthSystem class implements the described procedure, symbolically. Therefore, it
relies on a symbolic environment. Currently, three such environments are acceptable:

1. sympy

2. sage

3. symengine

14 Chapter 4. Hilbert Spaces
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4.2.1 Legendre polynomials

Let 𝑑𝜇(𝑥) = 𝑑𝑥, the regular Lebesgue measure on [−1, 1] and 𝐵 = {1, 𝑥, 𝑥2, . . . , 𝑥𝑛}. The orthonormal polynomials
constructed from B are called Legendre polynomials. The 𝑛𝑡ℎ Legendre polynomial is denoted by 𝑃𝑛(𝑥).

The following code generates Legendre polynomials up to a given order:

# the symbolic package
from sympy import *
from pyProximation import Measure, OrthSystem
# the symbolic variable
x = Symbol('x')
# set a limit to the order
n = 6
# define the measure
D = [(-1, 1)]
M = Measure(D, 1)
S = OrthSystem([x], D, 'sympy')
# link the measure to S
S.SetMeasure(M)
# set B = {1, x, x^2, ..., x^n}
B = S.PolyBasis(n)
# link B to S
S.Basis(B)
# generate the orthonormal basis
S.FormBasis()
# print the result
print B.OrthBase

4.2.2 Chebyshev polynomials

Let 𝑑𝜇(𝑥) = 𝑑𝑥√
1−𝑥2

on [−1, 1] and B as in Legendre polynomials. The orthonormal polynomials associated to this
setting are called Chebyshev polynomials and the 𝑛𝑡ℎ one is denoted by 𝑇𝑛(𝑥).

The following code generates Chebyshev polynomials up to a given order:

# the symbolic package
from sympy import *
from numpy import sqrt
from pyProximation import Measure, OrthSystem
# the symbolic variable
x = Symbol('x')
# set a limit to the order
n = 6
# define the measure
D = [(-1, 1)]
w = lambda x: 1./sqrt(1. - x**2)
M = Measure(D, w)
S = OrthSystem([x], D, 'sympy')
# link the measure to S
S.SetMeasure(M)
# set B = {1, x, x^2, ..., x^n}
B = S.PolyBasis(n)
# link B to S
S.Basis(B)
# generate the orthonormal basis

(continues on next page)

4.2. OrthSystem 15
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(continued from previous page)

S.FormBasis()
# print the result
print S.OrthBase

4.3 Approximation

Let (𝑋,𝜇) be a compact Borel measure space and 𝒪 = {𝑢1, 𝑢2, . . . } an orthonormal basis of function whose span is
dense in 𝐿2(𝑋,𝜇). Given a function 𝑓 ∈ 𝐿2(𝑋,𝜇), then f can be approximated as

𝑓 = lim
𝑛→∞

𝑛∑︁
𝑖=1

⟨𝑓, 𝑢𝑖⟩𝑢𝑖

OrthSystem.Series calculates the coefficients ⟨𝑓, 𝑢𝑖⟩:

4.3.1 Truncated Fourier series

Let 𝑑𝜇(𝑥) = 𝑑𝑥, the regular Lebesgue measure on [𝑐, 𝑐 + 2𝑙] and 𝐵 =
{1, sin(𝜋𝑥), cos(𝜋𝑥), sin(2𝜋𝑥), cos(2𝜋𝑥), . . . , sin(𝑛𝜋𝑥), cos(𝑛𝜋𝑥), }. The following code calculates the Fourier
series approximation of 𝑓(𝑥) = sin(𝑥)𝑒𝑥:

from sympy import *
from numpy import sqrt
from pyProximation import Measure, OrthSystem
# the symbolic variable
x = Symbol('x')
# set a limit to the order
n = 4
# define the measure
D = [(-1, 1)]
w = lambda x: 1./sqrt(1. - x**2)
M = Measure(D, w)
S = OrthSystem([x], D, 'sympy')
# link the measure to S
S.SetMeasure(M)
# set B = {1, x, x^2, ..., x^n}
B = S.FourierBasis(n)
# link B to S
S.Basis(B)
# generate the orthonormal basis
S.FormBasis()
# number of elements in the basis
m = len(S.OrthBase)
# set f(x) = sin(x)e^x
f = sin(x)*exp(x)
# extract the coefficients
Coeffs = S.Series(f)
# form the approximation
f_app = sum([S.OrthBase[i]*Coeffs[i] for i in range(m)])
print f_app
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4.3.2 Fitting Data

Suppose that a set of data points (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) are given, where 𝑥𝑖 ∈ R𝑛. To fit a curve or surface to data
with minimum average square error, one can employ OrthSystem with an arbitrary system of functions to do so.
The following example generates random data and fits two surfaces using polynomials and trigonometric functions:

from random import uniform
from sympy import *
from sympy.utilities.lambdify import lambdify, implemented_function
# import the module
from pyProximation import Measure, OrthSystem, Graphics
x, y, z = symbols('x, y, z')
# define dirac function symbolically and numerically
dirac = implemented_function(

Function('dirac'), lambda a, b: 1 * (abs(a - b) < .000001))
# list of random points
points = [(uniform(0, 1), uniform(0, 1)) for _ in range(50)]
# container for the support of discrete measure
D = {}
# a symbolic function to represent the random points
g = 0
# Random values of the function
vals = []
for p in points:

t = uniform(-.8, 1)
vals.append(t)
g += t * dirac(x, p[0]) * dirac(y, p[1])
D[p] = 1

# The discrete measure supported at random points
M = Measure(D)
# Orthonormal systems of functions
S1 = OrthSystem([x, y], [(0, 1), (0, 1)])
S1.SetMeasure(M)

S2 = OrthSystem([x, y], [(0, 1), (0, 1)])
S2.SetMeasure(M)
# polynomial basis
B1 = S1.PolyBasis(4)
# trigonometric basis
B2 = S2.FourierBasis(3)
# link the basis to the orthogonal systems
S1.Basis(B1)
S2.Basis(B2)
# form the orthonormal basis
S1.FormBasis()
S2.FormBasis()
# calculate coefficients
cfs1 = S1.Series(g)
cfs2 = S2.Series(g)
# orthogonal approximation
aprx1 = sum([S1.OrthBase[i] * cfs1[i] for i in range(len(S1.OrthBase))])
aprx2 = sum([S2.OrthBase[i] * cfs2[i] for i in range(len(S2.OrthBase))])
# the graphic object
G1 = Graphics('sympy')
G2 = Graphics('sympy')
G1.Plot3D(aprx1, (x, 0, 1), (y, 0, 1))
G2.Plot3D(aprx2, (x, 0, 1), (y, 0, 1))
P = []

(continues on next page)
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(continued from previous page)

idx = 0
for p in points:

q = (p[0], p[1], vals[idx])
P.append(q)
idx += 1

# link the points to the object
G1.Point(P, color='red')
G2.Point(P, color='red')
# save to file
G1.save('poly.png')
G2.save('trig.png')

18 Chapter 4. Hilbert Spaces



pyProximation Documentation, Release 1.3.3

4.4 Rational Approximation

Let 𝑓 : 𝑋 → R be a continuous function and {𝑏0, 𝑏1, . . . } an orthonormal system of functions over 𝑋 with respect
to a measure 𝜇. Suppose that we want to approximate 𝑓 with a function of the form 𝑝(𝑥)

𝑞(𝑥) where 𝑝 =
∑︀𝑚

𝑗=0 𝛼𝑗𝑏𝑗 and
𝑞 = 1 +

∑︀𝑛
𝑗=1 𝛽𝑗𝑏𝑗 . Let 𝑟(𝑥) = 𝑝(𝑥)− 𝑞(𝑥)𝑓(𝑥) be the residual. We can find the coefficients 𝛼𝑖, 𝛽𝑗 such that ‖𝑟‖2

be minimum.

Let 𝐿(𝛼, 𝛽) = 𝑟(𝑥) · 𝑟(𝑥). Then the solution satisfies the following equations:

𝜕

𝜕𝛼𝑖
𝐿 = 0,

𝜕

𝜕𝛽𝑖
𝐿 = 0,

which is a system of linear equations. This is implemented in rational.RationalAprox.RatLSQ:

from sympy import *
from pyProximation import *

x = Symbol('x')
f = sinh(x) * cos(3 * x) + sin(3 * x) * exp(x)
D = [(-pi, pi)]
S = OrthSystem([x], D)
B = S.PolyBasis(5)

# link B to S
S.Basis(B)

(continues on next page)
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(continued from previous page)

# generate the orthonormal basis
S.FormBasis()

# extract the coefficients of approximations
Coeffs = S.Series(f)

# form the approximation
h = sum([S.OrthBase[i] * Coeffs[i] for i in range(len(S.OrthBase))])
T = RationalAprox(S)
g = T.RatLSQ(5, 5, f)

G = Graphics('sympy', 100)
G.Plot2D(f, (x, -3.2, 3.2), legend='exact')
G.Plot2D(g, (x, -3.2, 3.2), color='green', legend='rational')
G.Plot2D(h, (x, -3.2, 3.2), color='red', legend='Legendre')
G.save('Exm05.png')
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CHAPTER 5

Interpolation

5.1 Lagrange interpolation

Suppose that a list of 𝑚+ 1 points {(𝑥0, 𝑦0), . . . , (𝑥𝑚, 𝑦𝑚)} in R2 is given, such that 𝑥𝑖 ̸= 𝑥𝑗 , if 𝑖 ̸= 𝑗. Then

𝑝(x) =

𝑚∑︁
𝑖=0

𝑦𝑖ℓ𝑖(x),

is a polynomial of degree m which passes through all the given points. Here

ℓ𝑖(x) =
∏︁
𝑗 ̸=𝑖

x− 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
,

are Lagrange Basis Polynomials.

This procedure can be extended to multivariate case as well.

Suppose that a list of points {𝑥1, . . . , 𝑥𝜌} in R𝑛 and a list of corresponding values {𝑦1, . . . , 𝑦𝜌} are given. Let’s denote
by X the tuple (X1, . . . ,X𝑛) of variables and X𝑒1

1 · · ·X𝑒𝑛
𝑛 by Xe, where e = (𝑒1, . . . , 𝑒𝑛).

If for some 𝑚 > 0, we have 𝜌 =
(︀
𝑚+𝑛
𝑚

)︀
, then the number of given points matches the number of monomials of degree

at most m in the polynomial basis. Denote the exponents of these monomials by e𝑖, 𝑖 = 1, . . . , 𝜌 and let

𝐷 =

⎛⎜⎝ 𝑥e1
1 . . . 𝑥

e𝜌

1
...

...
𝑥e1
𝜌 . . . 𝑥

e𝜌
𝜌

⎞⎟⎠
and for 1 ≤ 𝑗 ≤ 𝜌:

𝐷𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥e1
1 . . . 𝑥

e𝜌

1
...

...
...

𝑥e1
𝑗−1 . . . 𝑥

e𝜌

𝑗−1

Xe1 . . . Xe𝜌

𝑥e1
𝑗+1 . . . 𝑥

e𝜌

𝑗+1
...

...
...

𝑥e1
𝜌 . . . 𝑥

e𝜌
𝜌

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

21



pyProximation Documentation, Release 1.3.3

Then the polynomial

𝑝(X) =

𝜌∑︁
𝑖=1

𝑦𝑖
|𝐷𝑖|
|𝐷|

,

interpolates the given list of points and their corresponding values. Here |𝑀 | denotes the determinant of M.

The above procedure is implemented in the Interpolation module. The following code provides an example in
2 dimensional case:

from sympy import *
from pyProximation import Interpolation
# define symbolic variables
x = Symbol('x')
y = Symbol('y')
# initiate the interpolation instance
Inter = Interpolation([x, y], 'sympy')
# list of points
points = [(-1, 1), (-1, 0), (0, 0), (0, 1), (1, 0), (1, -1)]
# corresponding values
values = [-1, 2, 0, 2, 1, 0]
# interpolate
p = Inter.Interpolate(points, values)
# print the result
print p
G = Graphics('sympy')
points3d = [(-1, 1, -1), (-1, 0, 2), (0, 0, 0), (0, 1, 2), (1, 0, 1), (1, -1, 0)]
G.Point(points3d, color='red')
G.Plot3D(p, (x, -1.1, 1.1), (y, -1.1, 1.1))

This will be the result:
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5.2 𝐿2-approximation with discrete measures

Suppose that 𝜇 =
∑︀𝑛

1 𝛿𝑥𝑖 is a measure with n-points in its support. Then the orthogonal system of polynomials
consists of at most n+1 polynomials. Approximation with these n+1 polynomials is essentially same as interpolation:

# symbolic variable
x = Symbol('x')
# function to be approximated
g = sin(x)*exp(sin(x)*x)#x*sin(x)
# its numerical equivalent
g_ = lambdify(x, g, 'numpy')
# number of approximation terms
n = 6
# half interval length
l = 3.1
# interpolation points and values
Xs = [[-3], [-2], [-1], [0], [1], [2], [3]]
Ys = [g_(Xs[i][0]) for i in range(7)]
# a discrete measure
supp = {-3:1, -2:1, -1:1, 0:1, 1:1, 2:1, 3:1}
M = Measure(supp)
# orthogonal system
S = OrthSystem([x], [(-l, l)])
# link the measure
S.SetMeasure(M)
# polynomial basis
B = S.PolyBasis(n)
# link the basis to the orthogonal system
S.Basis(B)
# form the orthonormal basis
S.FormBasis()
# calculate coefficients
cfs = S.Series(g)
# orthogonal approximation
aprx = sum([S.OrthBase[i]*cfs[i] for i in range(len(B))])
# interpolate
Intrp = Interpolation([x])
intr = Intrp.Interpolate(Xs, Ys)
# plot the results
G = Graphics('sympy', numpoints=100)
G.SetTitle("$n = %d$"%(n))
G.Plot2D(g, (x, -l, l), color='blue', legend='Original')
G.Plot2D(aprx, (x, -l, l), color='red', legend='Orthogonal', thickness=2)
G.Plot2D(intr, (x, -l, l), color='green', legend='Interpolant')
G.save('OrthIntrp.png')
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CHAPTER 6

Collocation

6.1 Integro-differential equations

A system of integro-differential equations is a system of equations that involve both integrals and derivatives of a
function. The general first-order, linear (only with respect to the term involving derivative) integro-differential equation
is of the form

𝑑

𝑑𝑥
𝑢(𝑥) +

∫︁ 𝑥

𝑥0

𝑓(𝑡, 𝑢(𝑡))𝑑𝑡 = 𝑔(𝑥, 𝑢(𝑥)), 𝑢(𝑥0) = 𝑢0.

6.2 Collocation method

In collocation method, one assumes that the solution of the equation is of a certain form and tries to exploit information
about the assumed solution. More specifically, assume that 𝑢1, 𝑢2, . . . , 𝑢𝑛 are orthonormal functions and the solution
is of the form 𝑓 =

∑︀
𝑖 𝑎𝑖𝑢𝑖 where 𝑎𝑖 are unknowns. Plug f in to the equation and choose n different admissible

points. plug those points in to the resulting equation to eliminate x. Then we obtain n equations in terms of 𝑎1, . . . , 𝑎𝑛.
Solving the resulted system of algebraic equations gives an approximation for f.

6.3 Collocation class

6.3.1 Single equation

The Collocation class implements the above described method. The following example solves the equation 𝑑𝑦
𝑑𝑥 +

2𝑦 + 5
∫︀
𝑦𝑑𝑥 = 1, 𝑦(0) = 𝑦(2𝜋) = 0 where the exact solution is 1

2 sin(2𝑥)𝑒
−𝑥:

from sympy import *
from pyProximation import *
# symbolic variable
x = Symbol('x')

(continues on next page)
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(continued from previous page)

# symbolic function
y = Function('y')(x)
# number of approximation terms
n = 10
# orthogonal system
S = OrthSystem([x], [(0, 2*pi)])
# polynomial basis
B = S.PolyBasis(n)
# link the basis to the orthogonal system
S.Basis(B)
# form the orthonormal basis
S.FormBasis()
# form the equation
EQ = Eq(diff(y, x) + 2*y +5*integrate(y, x), 1)
# initiate collocation object with x as variable and y as function
C = Collocation([x], [y])
# link the orthogonal system to the collocation object and the unknown function `y`
C.SetOrthSys(S, y)
# link the equation to the collocation object
C.Equation([EQ])
# initial and boundary conditions
C.Condition(Eq(y, 0), [0])
C.Condition(Eq(y, 0), [2*pi])
# set the solver to 'scipy'
C.setSolver('scipy')
# solve to collocation system and print the solution
Apprx = C.Solve()
print Apprx[0]

In the above example the Collocation class selects collocation points itself according to the measure chosen
for orthogonal system, in this case, the usual Lebesgue measure. Thus, the class samples enough number of points
uniformly from the domain. The solution and the exact answer are depicted below:
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One can provide prefered collocation points to the solver. The following repeats the previous example where colloca-
tion points are selected in a way from the domain within a fixed distance from each other:

from sympy import *
from pyProximation import *
# symbolic variable
x = Symbol('x')
# symbolic function
y = Function('y')(x)
# number of approximation terms
n = 10
# orthogonal system
S = OrthSystem([x], [(0, 2*pi)])
# polynomial basis
B = S.PolyBasis(n)
# link the basis to the orthogonal system
S.Basis(B)
# form the orthonormal basis
S.FormBasis()
# form the equation
EQ = Eq(diff(y, x) + 2*y +5*integrate(y, x), 1)
# initiate collocation object with x as variable and y as function
C = Collocation([x], [y])
# link the orthogonal system to the collocation object and the unknown function `y`
C.SetOrthSys(S, y)
# link the equation to the collocation object
C.Equation([EQ])
# initial and boundary conditions
C.Condition(Eq(y, 0), [0])
C.Condition(Eq(y, 0), [2*pi])

(continues on next page)
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(continued from previous page)

# a list of collocation points
pnts = [[i*2*pi/n] for i in range(1,n)]
# link the collocation point to the object
C.CollPoints(pnts)
# set the solver to 'scipy'
C.setSolver('scipy')
# solve to collocation system and print the solution
Apprx = C.Solve()
print Apprx[0]

The result shows slight improvement in the solution:

Note: Each point of collocation must be given as a list or tuple.

6.3.2 System of equations

The Collocation class is also able to handle systems of equations. Consider the following system of partial
differential equations: {︂

𝜕𝑥
𝜕𝑡 + 𝑥+ 4𝑦 = 10

𝑥− 𝜕𝑦
𝜕𝑡 − 𝑦 = 0,

with initial conditions 𝑥(0) = 4 and 𝑦(0) = 3. The exact solution to the above system is:

𝑥(𝑡) = 2(1 + 𝑒−𝑡 cos(2𝑡)− 𝑒−𝑡 sin(2𝑡))
𝑦(𝑡) = 2 + 𝑒−𝑡 cos(2𝑡) + 𝑒−𝑡 sin(2𝑡)
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The following code solves the system and plots the exact and approximate solutions:

from sympy import *
from pyProximation import *
# symbolic variable
t = Symbol('t')
# symbolic function
x = Function('x')(t)
y = Function('y')(t)
# number of approximation terms
n = 8
# orthogonal system
S = OrthSystem([t], [(0, pi)])
# polynomial basis
B = S.PolyBasis(n)
# link the basis to the orthogonal system
S.Basis(B)
# form the orthonormal basis
S.FormBasis()
# form the equation
EQ1 = Eq(diff(x, t) + x + 4*y, 10)
EQ2 = Eq(x - diff(y, t) - y, 0)
# initiate collocation object with x as variable and y as function
C = Collocation([t], [x, y])
# link the orthogonal system to the collocation object and unknown functions
C.SetOrthSys(S, x)
C.SetOrthSys(S, y)
# link the equation to the collocation object
C.Equation([EQ1, EQ2])
# initial and boundary conditions
C.Condition(Eq(x, 4), [0])
C.Condition(Eq(y, 3), [0])
# set the solver to 'scipy'
C.setSolver('scipy')
# solve to collocation system and print the solution
Apprx = C.Solve()
# print the answers
print Apprx[0]
print Apprx[1]
# the exact solution
f = [2*(1 + exp(-t)*cos(2*t) - exp(-t)*sin(2*t)), 2 + exp(-t)*cos(2*t) + exp(-
→˓t)*sin(2*t)]
# plot the exact and approximate solutions
G = Graphics('sympy', numpoints=200)
G.SetTitle("$n = %d$"%(n))
G.ParamPlot2D(f, (t, 0, pi), color='blue', legend='Exact')
G.ParamPlot2D(Apprx, (t, 0, pi), color='red', legend='Approximation')
G.save('Plot-%d.png'%(n))

The followings are results for 𝑛 = 7 and 𝑛 = 8:
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CHAPTER 7

Distributing over subregions

Sometimes the system of equations is too complicated and it might be very costly to produce a reasonably good
estimation by raising the size of the function basis. A possible solution is to divide the domain into various smaller
subregions and try to solve the system for those smaller subregions. Use the partial solutions to force appropriate
boundary condition to the remaining subregions in order to get consistent solutions on all subregions. This task is
done by use of the SubRegion class.

Note: Currently, this only works with symbolic package sympy.
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CHAPTER 8

Graphics

This small module provides simple functionality to draw 2D and 3D plots. Since the functions that appear in this
package are of three different types, it must be declared to the Graphic class, what type of function it is dealing
with. The three different types are:

1. numeric, the default type,

2. sympy, the symbolic sympy functions,

3. sage, the symbolic sage functions

The following plots a list of random points in 3D:

from random import uniform
# import the module
from pyProximation import Graphics
# list of random points
points = [(uniform(-10, 10), uniform(-10, 10), uniform(-10, 10)) for _ in range(100)]
# the graphic object
G = Graphics()
# link the points to the object
G.Point(points, color='red')
# save to file
G.save('points.png')
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8.1 Two Dimensional Plots

The method Plot2D is to plot curves in 2 dimensions. The following code shows an example:

# chOose the symbolic environment
Symbolic = 'sympy'
# define the symbolic variables accordingly
if Symbolic == 'sympy':

from sympy import *
x = Symbol('x')
y = Function('y')(x)

elif Symbolic == 'sage':
from sage.all import *
x = var('x')
y = function('y')(x)

# import the modules
from pyProximation import *
# size of basis
n = 6
# set the measure
M = Measure([(-1, 1)], lambda x:1./sqrt(1.-x**2))
# Orthogonal system of functions
S = OrthSystem([x], [(-1, 1)], Symbolic)
# link the measure to the orthogonal system
S.SetMeasure(M)
# monomial basis
B = S.PolyBasis(n)

(continues on next page)
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(continued from previous page)

# Fourier basis
#B = S.FourierBasis(n)
# link the basis
S.Basis(B)
# form the orthogonal system
S.FormBasis()
# the exact solution
Z = sin(pi*x)*exp(x)
R = diff(Z, x, x) - diff(Z, x)
# the pde
if Symbolic == 'sympy':

EQ1 = (Eq(diff(y, x, x) - diff(y, x), R))
elif Symbolic == 'sage':

EQ1 = (diff(y, x, x) - diff(y, x) == R)
# corresponding coefficients
series = S.Series(Z)
# orthogonal approximation
ChAprx = sum([S.OrthBase[i]*series[i] for i in range(m)])
# set up the collocation class
C = Collocation([x], [y], Symbolic)
# link to the orthogonal system
C.SetOrthSys(S)
# link the equation
C.Equation([EQ1])
# initial conditions
if Symbolic == 'sympy':

C.Condition(Eq(y, 0), [0])
C.Condition(Eq(y, sin(-pi)*exp(-1)), [-1])
C.Condition(Eq(y, sin(pi)*exp(1)), [1])

elif Symbolic == 'sage':
C.Condition(y == 0, [0])
C.Condition(y == sin(-pi)*exp(-1), [-1])
C.Condition(y == sin(pi)*exp(1), [1])

# collocation points
m = len(S.OrthBase)
pnts = [[-1 + i*2./m] for i in range(m)]
# link the collocation points
C.CollPoints(pnts)
# set solver
C.setSolver('scipy')
# solve
Apprx = C.Solve()
print Apprx[0]
# plot the results
G = Graphics(Symbolic)
G.Plot2D(Z, (x, -1, 1), color='blue', legend='Exact')
G.Plot2D(ChAprx, (x, -1, 1), color='green', legend='Orth Apprx')
G.Plot2D(Apprx[0], (x, -1, 1), color='red', legend='Colloc Apprx')
G.save('PlotsPoly.png'%(n))
#G.save('PlotsFourier.png'%(n))
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For an example of parametric plots see this.
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8.2 Three Dimensional Plots

To generate static 3 dimensional plots, Graphics implement Plot3D. The following example illustrates the usage
of this method:

# select the symbolic tool
Symbolic = 'sympy'
if Symbolic == 'sympy':

from sympy import *
x = Symbol('x')
t = Symbol('t')
y = Function('y')(t, x)

elif Symbolic == 'sage':
from sage.all import *
t = var('t')
x = var('x')
y = function('y')(t, x)

# import the modules
from pyProximation import *
# degree of basis
n = 4
# orthogonal system
S = OrthSystem([t, x], [(0, 1), (0, 1)])
# monomial basis
B = S.PolyBasis(n)
# link the basis
S.Basis(B)
# form the orthonormal basis
S.FormBasis()
# construct a pde
Z = t*sin(pi*x)
R = diff(Z, t) - diff(Z, x)
if Symbolic == 'sympy':

EQ1 = Eq(diff(y, t) - diff(y, x), R)
elif Symbolic == 'sage':

EQ1 = diff(y, t) - diff(y, x) == R
# collocation object
C = Collocation([t, x], [y])
# link the orthogonal system
C.SetOrthSys(S)
# link the equation
C.Equation([EQ1])
# some initial & boundary conditions
if Symbolic == 'sympy':

C.Condition(Eq(y, 0), [0, 0])
C.Condition(Eq(y, 0), [0, .3])
C.Condition(Eq(y, 0), [1, 1])
C.Condition(Eq(y, 1), [1, .5])
C.Condition(Eq(y, 0), [0, .7])

elif Symbolic == 'sage':
C.Condition(y == 0, [0, 0])
C.Condition(y == 0, [0, .3])
C.Condition(y == 0, [1, 1])
C.Condition(y == 1, [1, .5])
C.Condition(y == 0, [0, .7])

# set the solver
C.setSolver('scipy')

(continues on next page)
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(continued from previous page)

# solve the collocation system
Apprx = C.Solve()
print Apprx[0]
# plot the result
G = Graphics(Symbolic)
G.SetLabelX("$t$")
G.SetLabelY("$x$")
G.SetLabelZ("$y(t, x)$")
G.Plot3D(Apprx[0], (t, 0, 1), (x, 0, 1))
# save the image
G.save('PDEplot.png'%(n))
# open the interactive window
G.interact()

A second method called interact is invoked at the end which called the mayavi library to show an interactive
view of the surface.
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CHAPTER 9

Code Documentation

class base.Foundation
This class contains common features of all modules.

DetSymEnv()
Returns a list. The list consists of all symbolic tools present among ‘sympy’,’sage’ and ‘symengine’.

class interpolation.Interpolation(var, env=’sympy’)
The Interpolation class provides polynomial interpolation routines in multi variate case.

var is the list of symbolic variables and env is the the symbolic tool.

Delta(idx=-1)
Construct the matrix corresponding to idx’th point, if idx>0 Otherwise returns the discriminant.

Interpolate(points, vals)
Takes a list of points points and corresponding list of values vals and return the interpolant.

Since in multivariate case, there is a constraint on the number of points, it checks for the valididty of the
input. In case of failure, describes the type of error occured according to the inputs.

MinNumPoints()
Returns the minimum number of points still required.

Monomials()
Generates the minimal set of monomials for interpolation.

class graphics.Graphics(env=’numeric’, numpoints=50)
This class tends to provide basic graphic tools based on matplotlib and mayavi.

Accepts one optional argument env which determines the types of the function to be visualized:

• numeric: is a numerical function (regular python functions)

• sympy: Sympy symbolic function

• sage: Sage symbolic function

ParamPlot2D(funcs, rng, color=’blue’, legend=”, thickness=1)
Appends a parametric curve to the Graphics object. The parameters are as follows:
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• funcs: the tupleof functions to be plotted,

• rng: a triple of the form (t, a, b), where t is the funcs’s independents variable, over the range [a, b],

• color: the color of the current curve,

• legend: the text for the legend of the current crve.

Plot2D(func, xrng, color=’blue’, legend=”, thickness=1)
Appends a curve to the Graphics object. The parameters are as follows:

• func: the function to be plotted,

• xrng: a triple of the form (x, a, b), where x is the func’s independents variable, over the range [a, b],

• color: the color of the current curve,

• legend: the text for the legend of the current crve.

Plot3D(func, xrng, yrng)
Sets a surface to the Graphics object. The parameters are as follows:

• func: the function to be plotted,

• xrng: a triple of the form (x, a, b), where x is the first func‘s independents variable, over the range
‘[a, b],

• yrng: a triple of the form (y, c, d), where x is the second func’s independents variable, over the range
[c, d].

Point(pnts, color=’blue’, marker=’o’, legend=”)
Adds a list of points to the plot.

SetLabelX(lbl)
Sets the label for X axis

SetLabelY(lbl)
Sets the label for Y axis

SetLabelZ(lbl)
Sets the label for Z axis

SetTitle(ttl)
Sets the title of the graph.

interact()
Shows an interavtive demo of the 3D surface, using mayavi, so it requires mayavi for python to be installed.

save(fname=’fig.png’)
Saves the outpu of the Graphics object to the file fname.
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CHAPTER 10

Indices and tables

• genindex

• modindex

• search
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Python Module Index
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